
Generi Cleanup in C++stephan�s11n.netSeptember 28, 2005AbstratThis artile develops a projet-neutral approah to leaning up standard ontainers in C++. We willshow how the leanup of any ontainer an be redued to a single API all, no matter how deeply nestedthe ontainer is, nor how many subontainers it may ontain, nor with lient-side regard to whether theontained items are pointer- or value-types. This opens up the door to providing exeption-safe, pointer-holding ontainers without the use of smart pointers. The approah is suitable for a wide variety of types,but we will demonstrate with standard ontainers beause those are a partiular problem when it omes toleaning up unmanaged pointers in the fae of exeptions.This artile and the soure ode developed for it are released into the Publi Domain.Revision History:10 July 2005: initial revisionContents1 Introdution 11.1 Preliminaries . 11.2 What is this all about? . 21.3 Motivating problem . 31.4 Soure ode . 42 Construting the implementation 42.1 A lient-side API . 42.2 leanup_traits<T> . 42.3 leanup_funtor . 52.4 Cleaning up a list<T> . 62.5 Cleaning up a map<K,V> . 72.6 Proteting against leaks during exeptions . 83 Wrapping up 93.1 Re-examining the motivating problem . 93.2 Simplifying reation of leanup funtors or leanup_traits . 93.3 It ain't just for ontainers... 93.4 What about leaning up void pointers and arrays? . 103.5 Ciao! . 10Referenes 101 Introdution1.1 PreliminariesThis artile assumes muh prior knowledge regarding C++. In partiular, we will make many assumptionsabout your understanding of how template speializations and partial template speializations work. If these1

terms mean nothing to you, this artile isn't likely to, either, but you an ertainly �nd some good tutorials onthe topi on the net, or in the lassi book C++ Templates, the Complete Guide, by Niolai Josuttis.Just as we will make many assumptions about your knowledge, we're also going to make some about mine: inpartiular the knowledge that i am often mistaken! If you �nd a bug in this artile or the aompanying soureode, please report it. Any and all feedbak are welomed, and your feedbak may be used to improve futureversions of this artile and the soure ode. You an reah me via email:stephan�s11n.netThe home page for this paper is:http://s11n.net/papers/This artile is dediated to martin f. kra�t (http://libfa.soureforge.net) and Christian Prohnow (http://www.plasses.om),both of whom provided very in�uential feedbak while i was working through libs11n's exeption handling rules.That work was the main inspiration for this artile.1.2 What is this all about?Have you ever had a ontainer like this:map<int,T*>or this:list< map<int,T*> >or even this:deque<list<multimap<int,T*>*>*>???You probably have, and you are probably well aware the fat that in none of those ases are the pointers ownedby their ontainers. What does that mean? It means, if we destroy the ontainers with transfering ownershipof the ontained pointers, the pointers will leak.There are several approahes to handling this type of leanup:
• Manually walk the ontainer, or use std::for_eah() and appropriate funtors, and delete the pointers asyou go. This requires knowing the struture of the ontained elements, and probably requires having someidea of their type(s), and thus normally requires at least some small amount of hand-written, ontainer-spei� ode per leanup operation.
• Use proxy objets to manage aess to your ontainers, suh that the proxies lean up the ontainers whenthe proxies are destroyed.
• Fundamantally the same as proxying, write your own ontainers whih manage pointers. It is not unom-mon to see a PtrList lass template in utility libraries.
• Use smart pointers, so that when a ontainer holding the pointers is destroyed, the pointers atuallylean up themselves. The only signi�ant down-side to this approah is that it imposes a spei� smartpointer implementation on the lient. As there isn't yet a standardized smart pointer implementation,the hoie of implementation is still very muh a personal issue, and not one i feel is worth imposing onusers of a given library unless the smart pointers plays a signi�ant role in the enompassing library (e.g.,as in Boost [www.boost.org℄). While we annot disount smart pointers as a viable solution, we will notonsider smart pointers here.There are ertainly other approahes, but those are the ones i an think about o� the top of my head.We're going to try a di�erent route. The goal is, in e�et, having a single funtion with whih we an leanup arbitrary ontaintainers, irrespetive of nesting level, pointerness o� the ontained types, and the atualontained types themselves (provided they are ompatible with our framework).2

1.3 Motivating problemThe original motivation for the API we will develop here ame about while working on libs11n 1.1.3. Whileexperimenting with the exeption onventions, i realized that there were exeption/failure ases in whih thelibrary would leak sometimes. The behaviour was preditable and de�nable, but entirely dependent on whattemplatized types were being used. The fundamental problem was, for the plaes at whih this happened therewas literally no logial ourse of ation the ode ould take. The only thing it ould do was all delete andhope for the best. And that works in many ases... but not in the ase of ontainers holding pointers, or nestedontainers where one of the sub-ontainers holds unmanaged pointers. i unfortunately failed to see that earlyon, as i didn't fully onsider the full impliations of deleting any given type. At that level of the library failuresrarely happen (they happen up-stream, in i/o), so the bug went unnotied until a full review of the ore soureode a long time (a bit over a year) after the ode was introdued into the library.In any ase, this was ompletely unaeptable behaviour on the library's part, and needed to be �xed. So, i satdown to implement an idea i'd been tossing around for almost a year, and had tried experimentally in anothertree at one point. This paper overs that approah, and shows that it an signi�antly simplify the leanup ofnot only ontainers, but arbitrary types whih hold unmanaged pointers. We will develop a small library whihprovides suh support to arbitrary lient ode.To provide a onrete example let's go over the ase in the s11n library so we an make it lear why we neededsomething more �exible than delete(). Rather that use the s11n ode for demonstration, whih would requirea signi�ant deal more bakground knowledge than neessary for our purposes, we will abstrat it a bit.Assume we have the following free funtion:template <typename T> T * reate_objet(onst data_soure & sr);Assume that data_soure is a DOM-like ontainer, but that's not at all important for our purposes. i point itout only to explain why the funtion argument is onst (whereas an input stream would not be onst).This funtion's purpose is to reate an objet, deserialize it using the given data soure, and give it bak to theuser. How it does this is unimportant for purposes of solving the leanup problem, so we won't go into thatlevel of detail.The onventions of the funtion are that on suess it returns a non-null pointer (whih the aller owns), andon error it returns 0 (or may propagate an exeption from elsewhere).It performs the following operations:1. Try to reate a T objet. If that fails, we an safely bail out with no hane of a leak. (This an failbeause we use a lassloader to load new types, polymorphially if needed.)2. Use some algorithm to populate the objet from sr (i.e., to �deserialize� it).3. If the operation sueeds, return the new objet, else...4. T is in an unde�ned state - we need to destroy it. How to safely destroy this objet is the sole topiof this artile!The problem is, that approah will work �ne for any T whih does not ontain �unmanaged pointers� - pointersnobody (yet) owns, in the sense of �who's going to delete them?� One T is a ontainer<X*>, that logi breaksdown onsiderably. What we need is a way to walk ontainers without having to know their types nor underlyingstruture, suh that we an dealloate any suh pointers, even in the ase of nested ontainers.This paper explains how we an satisfatorily solve this problem for any T whih meets a minimal set ofrequirements. Namely:1. If T is a pointer-quali�ed type, this ode must be legal: delete anInstaneOfT;2. The destrutor must not throw. This is a general C++ guideline, and types with destrutors that throware ategorially forbidden from use with the STL [CCS2005℄.That's it, really, as far as onrete requirements go. Some types, namely ontainers, will have some �indiret�requirements, and we will show how to aommodate those as our framework is �eshed out.
3

1.4 Soure odeThe omplete soure ode developed for this artile should be available at the artile's home page:http://s11n.net/papers/The soure ode should build on any C++ ompiler supporting partial template speialization. Compilerswithout this feature are impliitely not supported, beause this feature is (in my opinion) essential to solvingthis problem satisfatorily.2 Construting the implementationNow let's build a library apable of handling our motivating problem...2.1 A lient-side APIFirst let's lay down our �lient API� - the publi interfae whih serves as the ore entry point into our eventualfuntionality. Let's try:template <typename T> void leanup(T & obj) throw();The job of the funtion is to �lean up� the objet, with the exat de�nition of �lean up� being left a bit hazybeause it is inherently type-spei�. In brief �lean up� essentially means �delete pointers,� but might alsoinlude type-spei� behaviours. We will see examples of this soon, so don't worry too muh about these detailsjust yet.The throw() (i.e., throws no exeptions) quali�ation would seem to be justi�ed. As throwing exeptions fromdestrutors is normally onsidered a bad idea in C++, by extension we an onlude that leanup()'s logialrole in the destrution proess warrants the same guaranty. This justi�ation is admittedly philosophial innature, so implementors should feel free to hange the throw spei�ation to suit them. [A few days after writingthis i bought a opy of [CCS2005℄, and its Item 51 seems to bak up this deision.℄We're going to jump the gun just a small bit: as it turns out, it simpli�es some of our algorithms later if wehave the following overload for our leanup funtion:template <typename T> void leanup(T * & obj) throw();The di�erene between this and the �rst form is that this one deletes the objet and assigns it to zero afterpassing the all on to leanup<T>(*obj). Why we want this will beome lear later on. The assignment tozero is not mandatory, but seems reasonable and helps us test the ode for proper funtionality. For example,the following ode demonstrates the e�et of the seond form:T * t = new T;leanup<T>(t);assert(0 == t);The assertion will pass if all has gone well (and if NDEBUG isn't de�ned, whih disables assert()).With those two funtions, we have the omplete publi API for the funtionality we need. What we neednow is some way of translating spei� requirements for spei� types into alls to di�erent handlers. For ourpurposes, templates �ll this role niely, so we will pursue a solution based upon templates and �ompile-timepolymorphism.�2.2 leanup_traits<T>Now we jump to the �middle part� of the problem and de�ne a traits type. The type has only one purpose: tomap a given T to a set of rules (a funtor) whih knows how to lean up a T objet. The type looks somethinglike this:template <typename T> leanup_traits { 4

typedef some_funtor leanup_funtor; // leanup rules for Ttypedef T leaned_type; // for use with algos/funtors};We will use the leanup_traits type to translate alls to leanup<T>() through the proper (installed) funtor.Above i said this was the �middle� of the problem. Let's see how we an onnet this part with the �rst part,our publi API. Here are potential implementations of our leanup() funtions:template <typename T>void leanup(T & t) {typedef typename leanup_traits<T>::leanup_funtor CF;CF f;f(t);}template <typename T>void leanup(T * & t) {leanup(*t);delete t;t = 0;}Though the �rst variant an be implemented as one long line, i have broken it down into smaller steps, �rst forlarity, and seondly beause some ompilers don't appear to like:typename leanup_traits<T>::leanup_funtor()(t);Regarding the seond form: if you aren't familiar with the referene-to-pointer syntax, don't be alarmed. Whileodd-looking, it is perfetly valid and allows us to do some things to a pointer whih we annot do to a pointerpassed in to a funtion, like assign it to zero.Before we go on, let's make one highly arguable addition whih eases my mind a bit:template <typename T> leanup_traits<T*> : publi leanup_traits<T> {};i hope to be able to explain/justify this fully at some point. The main impliation of it is that leanup_traits<T*>::leaned_typedoes not have a pointer quali�er. This simpli�es some algorithm ode later on, but is otherwise not essential tothe framework.If your projet already uses some sort of traits type for storing type information, you might onsider addingleanup_funtor to your existing traits type, rather using leanup_traits. Whether this is appropriate ornot depends on your projet and the sope of your traits type.2.3 leanup_funtorRemember that some_funtor type we delared in leanup_traits? Well, we need to de�ne it. In fat,we need a default implementation we an speify in the base leanup_traits de�nition. As it turns out, areasonable implementation does exist for arbitrary types:
• For pointer types, delete them.
• For referene/value types, do nothing. Let the normal destrution of stak-alloated objets do its thing.That is a bit oversimpli�ed, but that's essentially what it boils down to. Note that we have shifted the pointer-handling into leanup(T*&), so the spei� leanup funtors do not know whether the objet they are leaningup is itself a pointer or a referene.Here is what the default implementation of the leanup funtor looks like:5

template <typename T>default_leanup_funtor {typedef T leaned_type;void operator()(leaned_type &) onst {// NOTHING!}};Why on earth do we want to do nothing there? Beause we annot apply any given set of rules to a referene ofany given type, so the default rule (i.e., the default implementation) is to do nothing. Before moving on, let'sshow that this is really the behaviour we want via examining a funtion like the one in our motivating example:template <typename T>T * reate_objet(SomeType input) {T * t = new T;if(! restore_state(input,*t)) {leanup(t); // t is deleted and assigned 0}return t;}(Note that we have a potential leak in the ase of an exeption, but we will over that later on.)Let's mentally substitute some various types for T and verify what leanup(t) does:
• T is a POD type: t is leaned up (a no-op) then deleted.
• T is a lient-side type: t is leaned up (no-op unless speial leanup_traits<T>::leanup_funtorde�ned) and deleted. This is normally orret for lient-side lasses.
• T is a ontainer: this is where we need to take are. Read on...Now, if we're omfortable with the onventions we've laid out so far (they seem reasonable enough to me),we are atually done with the �rst and seond layers of the framework. The �nal layer is in the type-spei�leanup rules.What we need now is to install rules for spei� ontainers, whih should walk the ontainers and all leanup()on eah item. This an be done in one of two ways:1. Speialize, or partially speialize, leanup_traits<T> for the ontainer type.2. Speialize, or partially speialize, default_leanup_funtor<T> for the ontainer type. (This is why thetemplate parameter for the default funtor is spei�ed at the lass level, not funtion level.)The approahes are equivalent, and whih you use is probably a question of taste and existing projet onventions(if any).2.4 Cleaning up a list<T>Given our ore API and a default leanup funtor, we fundamentally have everything we need to lean upnearly any struture. As the main motivation for this artile is standard ontainers, let's start with a simpleone: list<T>, where T may optionally be pointer-quali�ed.Above we listed two ways to install rules for a type with the ore framework. For this example we will speializethe default funtor, though this approah is fundamentally no di�erent than speializing leanup_traits andspeifying a di�erent funtor.Before we start, let's jump a bit ahead (again) and write a small funtor whih we will use very soon to simplifythe list-walking ode: 6

strut do_leanup {template <typename T> void operator()(T & t) throw() {leanup(t);}template <typename T> void operator()(T * & t) throw() {leanup<T>(t);}};Now let's �x leanup<list<T*>>() so that it works properly:template <typename VT>strut default_leanup_funtor< std::list< VT > > {typedef std::list< VT > leaned_type;void operator()(leaned_type &) throw() {std::for_eah(.begin(), .end(), do_leanup());.lear();}};What we've done is atually ensured two things: that both leanup<list<T*>>() and leanup<list<T>>()will work as expeted for any T whih has a valid leanup funtor installed.The above speialization of the default template works for all standard list-like ontainers, not just std::list:the only thing whih needs to be hanged is the std::list text. This inludes vetor, deque, set andmultiset, plus your own types whih are onventions-ompatible with those.Now let's look again at the behaviour of this all:typedef list<T *> ListT;ListT list;... populate list ...leanup(list);Let's assume T is:
• a POD: eah will be leaned up (a no-op) and then deleted.
• list<int>: eah sublist will be reusively walked and leaned up, then deleted.
• list<list<list<X*>*>*>: same as above. So far so good.
• list<map<int,X*>>: the pointers in the map will be leaked.We know how to �x that last ase, so let's do it...2.5 Cleaning up a map<K,V>Clearing a map is almost like leaning a list. There is one glaring problem, however: the keys of maps areonstant objets. In short, this means we annot apply leanup rules to them without violating their onstness.Given this, and the rarity of using unmanaged pointers as keys in maps, we will hiken out and delare thatmap keys are not leaned up by our rules.Here's what a leanup funtor for all standard maps might look:template <typename KT, typename MT>strut default_leanup_funtor< std::map< KT, MT > > {7

typedef std::map< KT, MT > leaned_type;void operator()(leaned_type &) throw() {typedef typename leaned_type::iterator IT;IT b = .begin();IT e = .end();if(e == b) return;typedef typename leanup_traits<MT>::leaned_type MTBase; // strippingpointer partfor(; e != b; ++b) {leanup<MTBase>((*b).seond); // this is why we wanted to stripany pointer part}.lear();}};As for the list-based algorithm, this exat same ode will also work with multimaps: simply replae std::mapwith std::multimap. It is also ignorant of the pointerness of the ontained types: they are handled identiallyregardless of whih they are. The only di�erene in pointer-vs-referene handling is in leanup(), where thepointer-based overload will delete the pointers, whereas stak-alloated objets will be destroyed in the all to.lear().Now let's go look again at the leanup of our infamous list<T> when T is a map type. When the list is leanedup, the map will be walked and any pointers in the �value part� of the map are freed (again, keys are not beausethey are onst). So the following will work as expeted:typedef map< int, list< map < string, X *> *> > MapT;MapT map;... populate map ...leanup(map);Through the reursive appliation of the leanup() algorithms, the ontainers are eah walked and any pointerentries deleted. Non-pointer entries are either skipped (via the no-op default funtor) or walked (if ontainers),but not deleted (whih they an't be). Any stak-alloated objets will be destroyed either by their ontainergoing out of sope or via an expliit all to lear() in the leanup funtor.It might be desireable to use a template metaprogramming tehnique to emit a warning, or even throw anexeption, if the key part of the map is a pointer. Remember that throwing is likely to ause the programto abort, beause leanup() is delared as no-throw. This may very well be preferred over a leak of thosepointers, however. For the very brave, feel free to ast away the onstness and lean up the keys - my respetfor onstness prohibits me from doing so.2.6 Proteting against leaks during exeptionsGiven our above, API, we have all that we really need to protet against a leak in our motivating example.Let's look at it again:template <typename T>T * reate_objet(SomeType input) {T * t = new T;try {if(! restore_state(input,*t)) {leanup(t); // t is deleted and assigned 0}ath(...) {leanup(t); 8

}return t;}While su�ient, it's a bit ugly. As it turns out, we an simplify the implementation with the use of astd::auto_ptr-like type. The soure ode distributed with this paper ontains a leanup_ptr lass tem-plate, whih is used like a std::auto_ptr but is intended spei�ally for handling ases overed by our leanupframework. An example:leanup_ptr<T> (new T);if(operation fails) return error or throw; // will lean up the objetreturn .release(); // transfer ownership of objet to allerWith that simple mehanism in plae we an simplify leanup during exeption/error handling signi�antlyand, in our ase, provide some leak-safety guarantees whih simply ouldn't be made without this, or a similar,feature.3 Wrapping upThe previous setion showed us everything we need to know to apply type-spei� leanup rules using a trivialframework. Let's leave with a few parting notes...3.1 Re-examining the motivating problemLet's take another look at the motivating problem desribed at the top of this artile, and show how our leanupframework approah allows the algorithm to safely reover from errors, instead of �sometimes� admitting a leak.In that ase, we had the following funtion:template <typename T> T * reate_objet(onst data_soure & sr);After the reation of the leanup framework it an preditably, reliably destroy nested objets of near-arbitrarytypes. It now performs the following operations:1. Try to reate a T objet. If that fails, we an safely bail out with no hane of a leak.2. Pass sr to the new objet so the objet an populate itself.3. If the operation sueeds, return the new objet, else...4. The objet might be in an unde�ned state: leanup(obj)Using the leanup_ptr<> mentioned above, the error-handling ode beomes trivial to write.3.2 Simplifying reation of leanup funtors or leanup_traitsOne feature whih would ertainly simplify using the library is to allow the reation of leanup funtor speializa-tions, or partial speializations, via maros. The libs11n ode uses this approah to reate partial speializationsfor the standard ontainers.3.3 It ain't just for ontainers...The model shown here works not only for ontainers. Containers are an important onsideration, indeed themotivating onsideration, for the framework, but it an also be used for other purposes. The original prototypefor this ode was used to lean up items from an underlying database-like store. Types whih partiipatedin the db alled the leanup funtor from their dtor, passing it their unique db identi�er (instead of theirpointer/referene). The funtor then removed any data assoiated with that instane of that type from the db.9

3.4 What about leaning up void pointers and arrays?This artile has spei�ally avoided the handling of void pointers and arrays during leanup beause, quitefrankly, i never use them. They are artefats from C, and don't have a plae in most modern C++ ode. i amalso not ertain of the impliations of generially freeing a void pointer: should we use free() or delete? Thestd::vetor lass is ompatible with C arrays and superior in every way (exept that it's a tiny bit larger thana raw array), so there is no reason not to swith from arrays to vetors.3.5 Ciao!Thanks for taking the time to read this artile. :)�� stephan�s11n.netReferenesReferenes[CCS2005℄ C++ Coding Standards, Herb Sutter and Andrei Alexandresu, 2005

10

